1、遇到这个问题Error using svmclassify (line 53)
The first input should be a struct generated by SVMTRAIN.
可参照https://blog.csdn.net/shang_jia/article/details/45535135;
即将你安装的libsvm去掉,运用matlab原有的libsvm就可以解决。
2、svm例子可参照:
http://www.ilovematlab.cn/thread-74019-1-1.html;
load fisheriris这个例子用自带svm没有问题
load ‘heart_scale.mat’这个例子利用加载libsvm程序在加载时出了问题,解决如下:
Error using loadUnable to read file ‘heart_scale.mat’: No such file or directory.加载数据改为[label_vector, instance_matrix] = libsvmread('heart_scale')即可。
https://blog.csdn.net/red_stone1/article/details/54313821;(自带svm函数)
http://www.ilovematlab.cn/thread-47453-1-1.html;(加载的libsvm)
3、加载的libsvm的例子:http://www.cnblogs.com/tornadomeet/archive/2012/06/04/2534939.html
1)16棋盘格数据分类
[checkerboard_16_predict_label]=svmpredict(checkerboard_16_test_label,checkerboard_16_test_data,model);%,checkerboard_16_accuarcy
2)UCI中iris数据分类(importdata)
[attrib1, attrib2, attrib3, attrib4, class] = textread('iris.txt', '%f%f%f%f%s', 'delimiter', ',');
attrib = [attrib1'; attrib2'; attrib3'; attrib4']';a = zeros(150, 1);a(strcmp(class, 'Iris-setosa')) = 1;a(strcmp(class, 'Iris-versicolor')) = 2;a(strcmp(class, 'Iris-virginica')) = 3;iris_new=[attrib a];iris_train_label=iris_new([1:40 51:90 101:140],end);%每类取40个数据作为训练,共120个训练数据
iris_train_data=iris_new([1:40 51:90 101:140],1:end-1);iris_test_label=iris_new([41:50 91:100 141:150],end);%每类取10个数据作为测试,共30个测试数据iris_test_data=iris_new([41:50 91:100 141:150],1:end-1);save irisdata;model=svmtrain(iris_train_label,iris_train_data);[iris_predict_label]=svmpredict(iris_test_label,iris_test_data,model);%,iris_accuracy
4、 MATLAB 自带的 svm 实现函数与 libsvm 差别小议:http://www.ilovematlab.cn/thread-85860-1-1.html